1,169 research outputs found

    A special class of solutions in F(R)F(R)-gravity

    Full text link
    We consider a special class of vacuum F(R)F(R)-modified gravity models. The form of their Lagrangian is such that the field equations are trivially satisfied when the Ricci scalar is constant. There are many interesting F(R)F(R)-models for inflation and dark energy that fall in this class. However, little is known outside the domain of cosmology therefore we aim to explore the class of solutions that are static and spherically symmetric. After some general considerations, we investigate in more detail black hole solutions, traversable wormhole metrics and, finally, configurations that can match the anomalous rotation curves of galaxies.Comment: Minor typos corrected, references added. Version accepted for publication in the European Physical Journal

    Double parton correlations in Light-Front constituent quark model

    Full text link
    Double parton distribution functions (dPDF) represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.Comment: 8 pages, 12 figures, invited talk at the "XLIV ISMD Conference", Bologna, Italy, 8-12 September 2014. Submitted to EPJ Web of Conference

    A model calculation of double parton distribution functions of the pion

    Full text link
    Two-parton correlations in the pion are investigated in terms of double parton distribution functions. A Poincar\'e covariant Light-Front framework has been adopted. As non perturbative input, the pion wave function obtained within the so-called soft-wall AdS/QCD model has been used. Results show how novel dynamical information on the structure of the pion, not accessible through one-body parton distribution, are encoded in double parton distribution functions.Comment: 14 pages, 8 figure

    A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets

    Get PDF
    The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges

    Feature selection combining linear support vector machines and concave optimization

    Get PDF
    In this work we consider feature selection for two-class linear models, a challenging task arising in several real-world applications. Given an unknown functional dependency that assigns a given input to the class to which it belongs, and that can be modelled by a linear machine, we aim to find the relevant features of the input space, namely we aim to detect the smallest number of input variables while granting no loss in classification accuracy. Our main motivation lies in the fact that the detection of the relevant features provides a better understanding of the underlying phenomenon, and this can be of great interest in important fields such as medicine and biology. Feature selection involves two competing objectives: the prediction capability (to be maximized) of the linear classifier and the number of features (to be minimized) employed by the classifier. In order to take into account both the objectives, we propose a feature selection strategy based on the combination of support vector machines (for obtaining good classifiers) with a concave optimization approach (for finding sparse solutions). We report results of an extensive computational experience showing the efficiency of the proposed methodology

    Peering into the Mediterranean black box: Lactifluus rugatus ectomycorrhizas on Cistus

    Get PDF
    We describe the morpho-anatomical features of the ectomycorrhizas (ECMs) formed by Lactifluus rugatus on Cistus, a genus of about 20 species of woody shrubs typical of the Mediterranean maquis. The description of L. rugatus mycorrhizas on Cistus is the first ECM description of a species belonging to Lactifluus subgen. Pseudogymnocarpi. The ECM identity was verified through molecular tools. Anatomically, the characteristic of L. rugatus mycorrhiza is the presence of abundant, long "bottle-shaped" cystidia on mantle surface. Indeed, the overwhelming majority of milkcap mycorrhizas are acystidiate. This is the third Lactarius/Lactifluus mycorrhiza to have been described associated with Cistus, the others being Lactarius cistophilus and L. tesquorum. The phylogenetic distance between all these taxa is reflected by the diversity of the principal features of their ECMs, which share host-depending ECM features known for Cistus, but are otherwise distinguishable on the host roots. Comparison of Lactifluus rugatus ECM with those formed by L. vellereus and L. piperatus on Fagus reveals elevated intrageneric diversity of mycorrhizal structures. Such a diversity is supported by analysis of ITS sequences of relevant species within European Lactifluus species. Our study extends knowledge of Cistus mycorrhizal biology and confirms the informative value of mycorrhizal structures in understanding phylogenetic relationships in ECM fungi

    A Comparative Study for Control of Quadrotor UAVs

    Get PDF
    Modeling and controlling highly nonlinear, multivariable, unstable, coupled and underactuated systems are challenging problems to which a unique solution does not exist. Modeling and control of Unmanned Aerial Vehicles (UAVs) with four rotors fall into that category of problems. In this paper, a nonlinear quadrotor UAV dynamical model is developed with the Newton–Euler method, and a control architecture is proposed for 3D trajectory tracking. The controller design is decoupled into two parts: an inner loop for attitude stabilization and an outer loop for trajectory tracking. A few attitude stabilization methods are discussed, implemented and compared, considering the following control approaches: Proportional–Integral–Derivative (PID), Linear–Quadratic Regulator (LQR), Model Predictive Control (MPC), Feedback Linearization (FL) and Sliding Mode Control (SMC). This paper is intended to serve as a guideline work for selecting quadcopters’ control strategies, both in terms of quantitative and qualitative considerations. PID and LQR controllers are designed, exploiting the model linearized about the hovering condition, while MPC, FL and SMC directly exploit the nonlinear model, with minor simplifications. The fast dynamics ensured by the SMC-based controller together with its robustness and the limited estimated command effort of the controller make it the most promising controller for quadrotor attitude stabilization. The outer loop consists of three independent PID controllers: one for altitude control and the other two, together with a dynamics’ inversion, are entitled to the computation of the reference attitude for the inner loop. The capability of the controlled closed-loop system of executing complex trajectories is demonstrated by means of simulations in MATLAB/Simulink®

    On the stability of scale-invariant black holes

    Full text link
    Quadratic scale-invariant gravity non minimally coupled to a scalar field provides a competitive model for inflation, characterized by the transition from an unstable to a stable fixed point, both characterized by constant scalar field configurations. We provide a complementary analysis of the same model in the static, spherically symmetric setting, obtaining two Schwarzschild-de Sitter solutions, which corresponds to the two fixed points existing in the cosmological scenario. The stability of such solutions is thoroughly investigated from two different perspectives. First, we study the system at the classical level by the analysis of linear perturbations. In particular, we provide both analytical and numerical results for the late-time behavior of the perturbations, proving the stable and unstable character of the two solutions. Then we perform a semi-classical, non-linear analysis based on the Euclidean path integral formulation. By studying the difference between the Euclidean on-shell actions evaluated on both solutions, we prove that the unstable one has a meta-stable character and is spontaneously decaying into the stable fixed point which is always favoured.Comment: 21 pages, 5 figure
    • …
    corecore